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Abstract: In this work, a large deformation, non-linear semi-analytical model for an all-elastomer,
capacitive tactile unit-sensor is developed. The model is capable of predicting the response of
such sensors over their entire sensing range under the application of normal forces. In doing
so the finite flat punch indentation model developed earlier is integrated with a capacitance
model to predict the change-in-capacitance as a function of applied normal forces. The empirical
change-in-capacitance expression, based on the parallel plate capacitance model, is developed to
account for the fringe field and saturation effects. The elastomeric layer used as a substrate in
these sensors is modeled as an incompressible, non-linear, hyperelastic material. More specifically,
the two term Mooney-Rivlin strain energy function is used as a constitutive response to relate the
stresses and strains. The developed model assumes both geometrical as well as material non-linearity.
Based on the related experimental work presented elsewhere, the inverse analysis, combining finite
element (FE) modeling and non-linear optimization, is used to obtain the Mooney-Rivlin material
parameters. Finally, to validate the model developed herein the model predictions are compared
to the experimental results obtained elsewhere for four different tactile sensors. Great agreements
are found to exist between the two which shows the model capabilities in capturing the response
of these sensors. The model and methodologies developed in this work, may also help advancing
bio-material studies in the determination of biological tissue properties.

Keywords: analytical modeling; capacitive all-elastomer tactile sensors; finite flat punch indentation;
finite elements; inverse analysis

1. Introduction

Owing to advances in robotics and bionic technologies in the past few decades, tactile sensors
have been the subject of intense attention [1–3]. Tactile sensors, through texture identification and
tactile perception, are capable of providing haptic feedback which is essential in object characterization
and dexterous manipulation. Therefore, in recent years, in addition to tactile sensor design and
development, a lot of attention has been given to research in texture identification. In such works,
the focus is on tactile information processing and tactile learning instead of the technological aspects
of these devices. For example, Watanabe et al. [4] developed a multi-axial tactile sensor using
micro-cantilevers embedded in a soft elastomeric layer. They showed that their proposed design is
capable of identifying three various kind of papers. In another example, Xu et al. [5] developed an
algorithm based on Bayesian exploration, and integrated it with multimodal tactile sensors (BioTac
from SynTouch, Los Angeles, CA, USA) to make an exploratory movements similar to those of humans
in order to identify objects. In another work by Friedl et al. [6], the authors, inspired by the biology of
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human tactile perception, implemented a neurorobotic texture classifier to classify surface textures
by touch. More recently, Kaboli et al. [7] proposed a set of novel tactile descriptors to extract robust
features from generated raw tactile signals. They then evaluated their proposed tactile descriptors
using their target search object algorithm developed in [8].

Robotic smart skins using these tactile sensors are, therefore, expected to increase dexterity and
perceptual capabilities of robots. This, in turn, will result in more precise and safer interaction with
humans and other objects in an unstructured and complex environment [9,10]. The development of
sophisticated smart skin is also expected to have transformative impacts on bionics.

Recent advances in microelectromechanical system (MEMS) technologies enable batch fabrication
and development of micron-size sensors. These unit sensors can then be arranged in an array, like
pixels in an image, to provide high spatial resolution. In the past, the common approach in fabricating
these sensors was to use a metal, ceramic, or silicon diaphragm to detect local deformation [11–13].
The problem with using metal and silicon as a substrate is they lack flexibility [14]. For these sensors
to be able to be mounted on curved surfaces, they need to be highly stretchable and flexible [15].
Thus, flexible substrates of various polymer-based materials, such as parylene, polyimide (PI), or
polydimethlysiloxane (PDMS) are proposed as the substrate for these sensors [16–19].

Different sensing mechanisms such as resistive [20], piezoresistive [21,22], capacitive [23], and
piezoelectric [24,25] have been proposed for tactile sensors. Among these mechanisms, capacitive
tactile sensors gain more attention because of their reliability, stability, simple structure, low-cost, and
temperature independence [26–28].

While in recent years, there have been tremendous advances in designing and fabricating tactile
sensors with both high dynamic range and high spatial resolution [29–31], little work has been done in
modeling of such sensors. This is particularly due to an inherent non-linear behavior of the elastomeric
materials used as a substrate in these sensors. The early works on modeling of tactile sensors are traced
back to [32] where Phillips et al. developed a model of skin using the theory of continuum mechanics.
They modeled the skin as a linear elastic and isotropic half-space. More general contact analysis of
this kind can be found in [33]. In a similar work, Fearing and Hollerbach modeled the finger-object
contact as an infinite linear elastic half-plane under the application of a point load [34]. Using the
thin-plate theory, Maier-Schneider et al. [35] and Wang et al. [36] developed an analytical model for
the load-deflection of square membranes, which can be used for tactile sensor model development.
In more recent works, Liang et al. [37] developed an analytical model for a polymeric, capacitive, tactile
sensors based on the Ritz method. In doing so, they simplified their six-layer sensor as a two-layer
plate structure by assuming that the polyethylene terephthalate (PET) substrate of the sensor to be
rigid. In [38], they modified their previous model by analyzing three-layer plate structure, accounting
for the deformation of PET layers as well. In [39], based on [37,38], a new array of tactile sensors using
the truncated pyramid as a dielectric layer was developed. The corresponding analytical model was
also presented. Similar to [37,38], the Ritz method was used in the model development. In all of the
above references the polymeric layer was modeled as a linear elastic isotropic material.

Another approach in modeling tactile sensors is using inverse analysis to reconstruct the contact
force distribution based on the sensor output. For example in [40] Vásárhelyi et al. developed an
analytical inverse solution for a tactile sensor under the application of a point load. In an another
example Liu et al. [41] proposed an inverse solution for the contact force in a sparse tactile sensor array
using the diffusion effect of the elastomer.

Due to the lack of robust and reliable analytical models, finite element analysis (FEA) is widely
used to assess the performance of these sensors [42,43]. Even in FEA, because of the convergence
issues associated with the non-linearity and large deformation of polymers, the elastomeric layer
is often modeled as a linear elastic material limiting the model applications to small strain, small
deformation conditions.

In light of the recent advances in machine learning (ML), there are some works trying to use ML
algorithms like neural networks and support vector machines (SVM) to predict the response of tactile
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sensors under different loading conditions [44–46]. However, several problems are associated with the
above approach which may include; the need for an empirical induction, the need for large amount
of sample data, and the dependency of the quality of the model on the training data. In general, an
analytical solution, whenever available, is preferred to ML solution [47].

As briefly described in the above, most available tactile sensor models treat the polymeric layer
as a linear elastic and isotropic medium. Thus, they are limited to small deformation and small
strain conditions. Inevitably, such assumptions limit the predictive capabilities of these models
to the linear regime, and make them unreliable under large deformation conditions thus limiting
their sensing range.

Novel all-elastomer tactile sensors have been designed and fabricated previously [48].
The purpose of the current study is to develop a large-deformation, large-strain model capable
of predicting the response of the fabricated sensors under the application of normal forces covering
their full sensing range. In doing so, a non-linear semi-analytical model developed for finite flat punch
indentation of soft elastomeric layer in [49,50], will be integrated with an enhanced capacitance model.
The empirical expression for change-in-capacitance is developed based on the parallel plate capacitance
theory and through model comparisons to the experimental results. The enhanced capacitance model
is expected to further improve model predictions and sensor design by accounting for fringe field and
saturation effects.

2. Summary of the Finite Flat Punch Indentation Model

A novel all-elastomer, capacitive, tactile sensor was designed and fabricated as discussed in [48].
While the fabricated sensor in [48] is designed to sense both normal and shear forces, the focus in this
study is to develop a model capable of predicting the response of the above sensor under the application
of normal forces only. The shear sensor modeling remains the subject of an on-going research.

The working principle of the fabricated sensors in [48] is shown in Figure 1. As shown in the
figure, the all-elastomer tactile unit-sensor consists of two electrodes and a pillar (conductive features)
embedded in a polymeric layer (dielectric feature). As a force is applied on the sensor, its top-surface
deforms and the sensor compresses in the direction of the applied force and expands in the transverse
direction, consistent with Poisson’s effect. As a result, the distance as well as the overlapping area
between the electrodes and pillar will change. This, in turn, will alter the stored electrical energy and
the capacitance between the conductive features, consequently. Therefore, the sensor can manifest the
applied loading as a change in capacitance between the electrodes and the change in capacitance can
be used to identify the location, magnitude, and direction of the applied loads. An important premise
of the above model is that the relatively stiffer conductive elastomer, during deformation, floats within
the layer like a pair of stiff wires placed in a layer of soft jello [49].

As shown in the figure, a typical punch-sensor contact length is in the order of 20 mm while the
largest distance between two electrodes in these sensors is in the order of 1.0 mm [48]. Therefore,
as discussed in [49], the mechanics of the elastomeric layer in the vicinity of the symmetry plane
i.e., the region of interest in the tactile sensor modeling, can be estimated by considering an infinitely
long layer compressed uniformly (infinite layer-infinite punch assumption). The model for the above
problem i.e., the uniform compression of a soft polymeric layer, has been solved analytically and was
presented in [49]. Although the model developed in [49] was then adopted in the development of a
capacitive tactile sensor predictive model [31], several approximations were introduced, thus limiting
the effectiveness of the developed model. A major limiting aspect is that, for contact force calculations,
a corresponding infinite layer-finite punch formulation (i.e., finite flat punch indentation problem) is
needed. This problem, which is shown in Figure 2, was solved in [50] and shall be employed in this
study in the development of an enhanced sensor model. Consistent with the figure, the schematic
associated with the uniform compression case shown in Figure 1, can be seen as a close-up view of the
schematic associated with the indentation case in the vicinity of the symmetry plane.
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Figure 1. A schematic of the tactile unit-sensor designed and fabricated in [48]. Undeformed (reference)
configuration is shown in (a); while the deformed (current) configuration is shown in (b). Due to typical
large contact length-electrode spacing ratios, the mechanics of the elastomeric layer in the vicinity of
the symmetry plane can be modeled as uniform compression of an infinitely long layer.

Figure 2. A schematic of an infinitely long elastomeric layer compressed by a finite flat punch.
The schematic corresponding to the uniform compression can be seen as a close-up view of the
indentation model in the vicinity of the symmetry plane.
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2.1. Layer Kinematics

A schematic of a boundary value problem solved in [49,50] is shown in Figure 3. More specifically,
a schematic of an infinitely long layer of finite thickness H compressed under the application of a
finite flat punch of half-length Lp is shown in Figure 3a. The region of interest in the tactile sensor
modeling in the vicinity of the symmetry plane and far from the punch edges is highlighted. Consistent
with the figure, the mechanics of the highlighted region, whose schematic is magnified in Figure 3b,
can be modeled by considering a long layer of finite thickness H compressed uniformly under the
applied displacement U. Provided the contact, loading, and material are uniform in the x3 direction,
the problem can be modeled under the plane strain condition. The two-term Mooney-Rivlin (M-R)
constitutive response is used to model the elastomeric layer [49].

(a)

(b)
Figure 3. (a) A schematic of a boundary value problem associated with the finite flat indentation
case. The region of interest in the tactile sensor modeling, in the vicinity of the symmetry plane, is
highlighted; (b) Magnified view of the highlighted region in (a) which can be modeled as the uniform
compression case. For clarity, the conductive features are not shown.

As shown in the figure, coordinates (x1, x2, x3) and (y1, y2, y3) are parametrizing the reference
(undeformed) and current (deformed) configuration, respectively. Under the displacement components
u1(x1, x2) and u2(x2), in the x1- and x2-directions, respectively, point Q(x1, x2, x3) in the reference state
deforms to point Q′(y1, y2, y3) in the current state. Using the models developed in [49,50], the above
displacement components are given by,

u1(x1, x2) = y1 − x1 = x1( f (x2)− 1), (1a)

u2(x2) = y2 − x2 = g(x2)− x2, (1b)

where f (x2) and g(x2) are general functions of x2 and are expressed as follows,

f (x2) = cos(αx2) + tan(αH) sin(αx2), (2)
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g(x2) =
cos(αH)

α

(
log

1 + sin(αH)

1− sin(αH)
− log

1 + sin(αH)− cos(αH) tan( αx2
2 )

1− sin(αH) + cos(αH) tan( αx2
2 )

)
. (3)

In the above expressions, H is the initial layer thickness and α is the parameter that only depends
on the layer deformation U and is given by the following empirical expression [50],

αH = 1.6718(
U
H
)0.5313. (4)

2.2. Stress Analysis

Consistent with [49,50], the non-trivial Cauchy (true) stress components in the deformed (current)
configuration developed in the polymeric layer are given by,

σ11 = −P + C1( f 2 + x2
1 f ′2) + C2g′2, (5a)

σ12 = µ0x1 f ′g′, (5b)

σ22 = −P + C1g′2 + C2( f 2 + x2
1 f ′2), (5c)

σ33 = −P + C1 + C2, (5d)

where C1 and C2 are the M-R material constants, µ0 = C1 − C2 is the initial shear modulus, and
P(x1, x2) is the independent pressure term which is expressed as follows,

P(x1, x2) =−
µ0

2
α2x2

1 f 2 +
C1 + C2

2
1
f 2 + C2(x2

1 f ′2 + f 2) + Π. (6)

In the above equation, Π is a function of deformation level (U) and punch half length (Lp) and is
given as follows [50],

Π
µ
(

U
H

,
Lp

H
) =

(
(ζ +

Lp

H
) exp(ξ

U
H
) +(ζ −

Lp

H
) exp(−ξ

U
H
)

)
Π0

µ
, (7)

with Π0 = 1.4559, ζ = 0.2056 and ξ = 2.6783, all obtained in [50].
Using the Cauchy stress, the non-trivial 1st Piola-Kirchhoff (P-K) stress components in the

undeformed (reference) state can be expressed as follows [49],

T11 =
1
f

(
−P + C1 f 2 + C2

1
f 2 + C2x2

1 f ′2
)

, (8a)

T12 = µ0x1
f ′

f 2− x1 f ′
(
−P + C1

1
f 2 + C2( f 2 + x2

1 f ′2)
)

, (8b)

T21 = µ0x1 f ′, (8c)

T22 = f
(
−P + C1

1
f 2 + C2( f 2 + x2

1 f ′2)
)

. (8d)

2.3. Contact Force Calculation

The contact force between the punch and the sensor in the x2-direction can be calculated by either
integrating the Piola-Kirchhoff stress component T22 over the undeformed contact area or the Cauchy
stress component σ22 over the deformed contact area [49,50]. As discussed in [50], a special care needs
to be taken in carrying out the above integration. More specifically, due to the slip of material points
on the top surface of the polymeric layer, some of the points that were initially in contact with the
horizontal surface of the punch slip and become in contact with the vertical edge of the punch. These
points will not carry any σ22 stress component, and therefore will not contribute to the reaction force
developed in the punch in the x2-direction. This needs to be accounted for in contact force calculations.
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In light of the above and Consistent with [50], Leff is defined as an effective half-length over which
the σ22 stress component is non-zero. Using the methodology described in [50], Leff was found to take
the following form,

Leff = cos(αH)Lp, (9)

where α is given by Equation (4) and depends on the deformation level, and Lp is the punch half-length.
By carrying out the integration the contact force in the x2-direction can be found to be in the following
form [49,50],

F = 2wpLeffλµ0

(
1
6

α2L2
effλ

2 +
1
2

1
λ2 −

Π
µ0

)
, (10)

where wp is the out-of-plane punch width, Leff is the effective contact length and is given by
Equation (9), λ = f (H) is the stretch ratio in the x1-direction on the top surface of the polymeric layer,
µ0 = C1 − C2 is the shear modulus, α is given by Equation (4), and Π is given by Equation (7) [50].

3. Tactile Unit-Sensor Model Development

A schematic of the half symmetric cross section of the tactile sensor designed and fabricated
in [48] is shown in Figure 4a. As shown in the figure, due to the applied force in the x2-direction,
the sensor in the vicinity of the symmetry plane undergoes a compressive stress. This, in turn,
causes the sensor to compress in the x2-direction and expand in the x1-direction, consistent with
the Poisson’s effect and mass conservation. A capacitance sensor model would require predictive
capabilities related to the movement/deformation of the compliant electrodes as needed to estimate
the capacitance between them.

(a)

(b)
Figure 4. (a) A schematic of the half symmetric cross section of the tactile sensor designed and
fabricated in [48] and modeled in this study; (b) A flowchart showing the process used in this study to
model the relationship between the change-in-capacitance and applied force.

As shown in Figure 4a, after the deformation, the initial electrode gap De increases to a
larger gap de, while the initial electrode thickness Te decreases to a smaller thickness te.

In the proceeding sections, the large deformation mechanics model developed in [49,50] is
combined with an enhanced parallel plate capacitance model accounting for the fringe field as well
as saturation effects to develop a tactile sensor model capable of predicting the applied force as a
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function of change in capacitance over the entire sensing range. The above process is summarized in
the flowchart shown in Figure 4b.

3.1. Dimensions of Fabricated Sensors

A schematic showing the detailed geometry of the fabricated sensor in [48] is shown in Figure 5.
As shown, through a special microfabrication process, conductive layers (electrodes and pillar) are
embedded into the polymeric layer of initial thickness H = 1000 µm. The conductive and dielectric
layers have out-of-plane width we = wd = 1000 µm. The electrodes and pillar are of initial thickness
Te = 100 µm and Tp = 300 µm, respectively, and are placed at Sb = 600 µm from the bottom surface
of the sensor. The initial electrode gap of De = 20 µm is introduced between the electrodes and
pillar. The pillar has a total in-plane width of Dp = 1000 µm making the total distance between the
electrode and the symmetry plane to be 520 µm. Experimental tests are performed by applying a
vertical displacement to the sensor using a 3× 3 mm probe and reading the capacitance as well as the
reaction forces [48].

Figure 5. A detailed geometry of the tactile unit-sensor designed and fabricated in [48].

3.2. Experimental Results

It is important to note that this study is not an experimental study. It is mainly focused on the
development of an enhanced model capable of predicting tactile sensor response over its entire
sensing range under large deformation conditions. However, in calibrating the model existing
experimental results are employed. Thus, the experimental results reported in [48] will be used
for (a) performing an inverse analysis as needed to obtain the M-R parameters; (b) obtaining the
capacitance model parameters; and (c) validating the modeling results. Therefore, for completeness,
the related experimental results reported in [48] are summarized in this section. More specifically, the
results associated with the response of the sensors under the application of normal force are presented
in Table 1. As shown in the table, the change in capacitance (∆C) and the applied contact force (F) are
tabulated for each top-surface deformation level (U) tested in [48].

Table 1. Experimental results associated with the application of normal force reported in [48].

U (µm) F (N) ∆C (fF)

30 0.9021 1.3710
60 1.7351 2.5004
90 1.5792 3.0618

120 3.4213 3.8438
150 4.2637 4.6920
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3.3. Tactile Unit-Sensor Capacitance Estimates

According to the parallel plate capacitance model, the capacitance between two parallel plates is
proportional to the overlapping area between the electrodes (A = Te · we) and inversely proportional
to the electrodes gap (De) as follows,

C = εrε0
Te · we

De
, (11)

where ε0 and εr are the permittivity of the free space and the relative permittivity of the dielectric
material between the two plates, respectively. As long as the electrode thickness (Te) and width (we) are
much bigger than the electrodes spacing (De), the electric field between the electrodes can be assumed
uniform and the fringe fields are negligible. As either the electrode thickness or width becomes
comparable to the electrode gap, the fringe fields may play an equally important role in the measured
capacitance and the parallel plate estimates may thus deviates appreciably from the actual capacitance
between the electrodes. Moreover, the parallel plate capacitance model given in Equation (11) does not
account for the saturation of dielectric layer under increased compressive forces. Therefore, consistent
with [31], and based on the experimental results as well as the FE simulations the correction factor in
the form of q(U/De)γ is introduced in the change in capacitance expression to account for the above
effects. As will be shown later on, q and γ are obtained through model comparison to the experimental
results reported in [48] and non-linear curve fitting [51].

In light of the above and consistent with the flowchart shown in Figure 4b, the change in
capacitance due to the sensor top-surface deformation can be calculated in terms of the original
electrode thickness (Te), current electrode thickness (te), original electrode gap (De), current electrode
gap (de), and electrode width (we) as follows,

∆C = C− C0 = qεrε0we

(
te

de
− Te

De

)(
U
De

)γ

. (12)

Using the mechanics model developed in [49,50], the current electrode thickness and spacing can
be calculated as follows,

te = Te − (u2(x2 = Sb + Te)− u2(x2 = Sb)) (13)

de = De − u1(x1 =
Dp

2
, x2 = Sb) + u1(x1 =

Dp

2
+ De, x2 = Sb). (14)

4. Identification of Constitutive Parameters From the Force-Deformation Curves

As already mentioned, the substrate of the fabricated tactile sensor in [48] is modeled using
the two-term Mooney-Rivlin (M-R) hyperelastic material response. One of the challenges in using
hyperelastic material model, is obtaining the correct material parameters. While in our previous
work [31] the M-R material parameters were estimated using the elastic moduli and incompressibility
condition of PDMS, in this study, based on the methodology described in [52–54] an inverse method,
combining finite element modeling and numerical optimization, is used to obtain the M-R material
parameters C1 and C2. More specifically, first, based on the tactile unit-sensor geometry fabricated
in [48] and shown in Figure 5, the related FE model with an initial guess of the M-R material parameters
x0 = [C1, C2]

T is developed and solved. Then, the force-deformation curves obtained from the FE
simulations are compared to the ones from the experimental results. This is followed by an optimization
process, where the M-R parameters are iteratively updated until the error between the FE simulations
and experimental results becomes less than some tolerance threshold.
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4.1. Finite Element Modeling

The commercial FE solver Abaqus [55] is used to carry out the FE simulations. Due to the large
deformation and high non-linearity considered in this study, Abaqus/Explicit is used to solve the
related quasi-static problem [49].

Consistent with an incompressible hyperelastic material model used in Section 2, the two-term
M-R constitutive response is used to model the soft elastomeric layer. In Abaqus/Explicit, in order
for the solver to overcome the convergence issues associated with ν = 0.5, slight compressibility is
assumed. However, as long as the layer is not highly confined, the slight introduced compressibility
does not effect the accuracy of the solution [55].

It is noteworthy to mention that the M-R hyperelastic material model in Abaqus is defined slightly
different than the model used in [49,50] and summarized in Section 2. More specifically, the M-R
material parameters in Abaqus are defined as C10 and C01 and they are related to C1 and C2 defined
earlier by the following expressions,

C1(in model) = 2C10(in Abaqus), (15a)

C2(in model) = −2C01(in Abaqus). (15b)

For quasi-static simulations in Abaqus/Explicit, an appropriate step time needs to be determined
such that the state of static equilibrium is achieved where the inertia effects can be neglected [55].
Consistent with [50], by performing frequency analyses, the step time period is set to 4 s for
the simulations.

In accordance with the fabricated sensor geometry depicted in Figure 5, the discretized domain
with associated boundary conditions shown in Figure 6 is used to perform the FE simulations.
As shown in the figure, a 2-dimensional plane strain model is used. By employing symmetry boundary
condition at x1 = 0, only the right half of the polymeric layer is modeled. Initial layer thickness
is set to H = 1000 µm. To ensure the infinite layer assumption, the aspect ratio of length to height
L/H = 10.0, resulting in total length of L = 10.0 mm, is chosen. Fixed boundary condition is used
for the bottom surface of the polymeric layer at x2 = 0.0. The punch is modeled as an analytic rigid
body. The motion of a rigid body in Abaqus is governed by the motion of a single node, known as the
rigid body reference node. Therefore, the prescribed displacements are applied to this node. More
specifically, consistent with the experimental tests carried out in [48], increments of 30 µm vertical
displacements up to 150 µm are applied to this node while keeping the horizontal displacement at
zero. Also, as shown in Figure 6, to alleviate the convergence difficulties associated with the sharp
corner of the rectangular punch, the punch’s corner is rounded accordingly.

The contact between the punch and the polymeric layer is modeled using a “contact pair” where
the punch and the elastomeric layer are defined as a “master” and “slave” surfaces, respectively.
Frictionless condition is assumed for the contact property so that the polymeric layer can freely slip
below the punch.

The polymeric layer is discretize using a 4-node, bilinear, plane strain, quadrilateral and reduced
elements known as CPE4R in Abaqus/Explicit. The typical mesh used in the FE simulations is shown
in Figure 6b. Mesh convergence studies are carried out, such that further mesh refinement does not
effect the solution considerably. The final mesh consists of 4000 elements corresponding to 4222 nodes
and 8445 total degrees of freedom (1 Lagrange multiplier variable).

As will be shown later on, MATLAB optimization toolbox [51] is used in order to perform the
non-linear optimization for finding the M-R material parameters. Therefore, a related Python script
is written to carry out the FE simulations as needed to be compiled in the MATLAB environment.
The script reads the M-R material parameters from a related file, performs simulations for all the
displacements considered in this study (U = 30, 60, 90, 120, 150 µm), and reports the associated contact
forces in the x2-direction.
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(a)

(b)
Figure 6. (a) The domain and associated boundary conditions used in carrying out the FE simulations;
(b) The typical mesh used in FE analysis.

4.2. Inverse Analysis

As already mentioned MATLAB optimization [51] is used to solve a non-linear optimization
problem. In doing so, Nelder-Mead simplex algorithm is used [56].

The optimization is formulated as the minimization of the objective function with respect to the
unknown M-R material parameters x = [C10, C01]

T . The objective function Ψ(x) is defined as the
square of the 2-norm of the error between the numerical results obtained by the FE simulations and
experimental results reported in [48] i.e.,

Ψ(x) = e(x)T · e(x) =
m

∑
i=1

e2
i (x), (16)

where m = 5 is the number of the experimental data points (see Table 1) and ei is the error between the
FE simulations and experimental measurements for the ith data point and is given as follows,

ei(x) = FExp
i − FFE

i (x). (17)

In the above expression, FExp
i and FFE

i are the contact forces obtained for the ith displacement
vector (U = [30, 60, · · · , 150]T µm) using experimental results and FE simulations, respectively.

It is noteworthy to mention that since the FE simulations are making use of the symmetry
condition, in defining the objective function and calculating the error, either the experimental contact
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forces need to be divided by two to give the half of the contact forces corresponding to the symmetric
model or the numerical results need to be multiplied by two to give the total contact force.

The inverse analysis starts with the initial guess of the M-R material constants, x0 = [C0
10, C0

01]
T .

It then, performs the FE simulations using the above parameters, compares the results with
experimental data points, and uses the optimization algorithm to iteratively update the solution
until the FE and experimental results converges. The optimization procedure is summarized in the
flowchart shown in Figure 7.

Figure 7. A flowchart of inverse FE optimization used in estimating the Mooney-Rivlin material parameters.

Using the inverse analysis with the initial material parameters C10 = 4370 Pa and C01 = 3670 Pa
the optimization algorithm converges to the following solution after 12 iterations,

xsol = [C10, C01]
T = [70.25, 39.53]T kPa. (18)

The objective function is evaluated at each iteration and is plotted against the number of iterations
in Figure 8 to show the convergence behavior of the inverse problem. As shown, the error function
drops very quickly during the first 8 iterations. It then hits a plateau and eventually stops after the
12th iteration.

Using the parameters obtained by the inverse analysis, given in Equation (18), the contact force
is plotted against the top-surface deformation and compared to the experimental results in Figure 9.
More specifically, the discrete points are showing the experimental results reported in [48], while the
solid line is showing the FE predictions using the M-R material parameters obtained through inverse
analysis. As shown, the FE simulations are in great agreement with the experimental measurements,
which indicates that the M-R material parameters given in Equation (18) captures the response of the
PDMS layer used in the sensors fabricated in [48].
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Figure 8. The objective function given by Equation (16) evaluated and plotted against the number of
iterations to show the convergence behavior of the inverse problem employed in this study to find the
M-R material parameters.

Figure 9. Probe contact force plotted against the top surface deformation obtained through experimental
results reported in [48] (discrete points) and FE simulations carried out in this study (solid line).
In obtaining the FE simulations the M-R material parameters obtained via the inverse analysis are used.

It is worth noting that the shear modulus corresponding to the above M-R material constants
(Equation (18)) is calculated to be µ0 = 2(C10 + C01) = 224.02 kPa which corresponds to elastic
modulus of E = 3µ0 = 672.1 kPa. The above is consistent with the shear and elastic modulus of PDMS
reported in the literature [31,48].

In the following section, the tactile unit-sensor model presented in Section 3 will be used along
with the M-R material parameters obtained through the inverse analysis to predict the response of
these sensors. The model prediction will be then compared to the experimental results reported in [48]
and summarized in Table 1.

5. Results and Discussion

The response of capacitive tactile sensors is captured through the change in capacitance-applied
force curves. Accordingly, the ultimate goal of the modeling of these sensors is to establish
the above relationship. Consistent with the flowchart shown in Figure 4, in this section, the
aforementioned relationship will be formulated by combining the finite flat punch indentation model
summarized in Section 2 with the capacitance model summarized in Section 3.3. More specifically,
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Equations (10) and (12) will be used to calculate the punch-sensor contact force and change in
capacitance, respectively. As shown in the flowchart, for the change-in-capacitance calculations,
the mechanics model given by Equation (1) is used to obtain the current electrode thickness and
spacing. The parameters q and γ, accounting for fringe field and saturation effects, are obtained
through model comparisons to the experimental results and non-linear curve fitting.

5.1. The Sensor-Probe Contact Force

The reaction force developed in the contact probe due to the applied vertical displacement is
plotted and compared to the experimental measurements reported in [48] in Figure 10. The discrete
points are showing the experimental results (Table 1) and the solid line is showing the model
prediction obtained by Equation (10). As shown, great agreements are found out to exist between the
model predictions and the experimental results. This confirms that the finite flat punch indentation
semi-analytical model developed in [50] and summarized in Section 2 can accurately predict the
contact force applied on these all-elastomer sensors.

Figure 10. The probe contact force plotted against the top surface deformation level. The discrete points
are showing the experimental result reported in [48], whereas the solid line is showing the modeling
results obtained through Equation (10).

5.2. The Change in Capacitance-Applied Force Curves

As already mentioned and consistent with [31], the q(U/De)γ term is introduced in the
change-in-capacitance formula obtained by the parallel plate capacitance model to account for the
fringe field and saturation effects. By using the experimental change-in-capacitance measurements and
the non-linear curve fitting the above parameters were determined to be q = 0.2469 and γ = −0.2720.
Using the above parameters, the change-in-capacitance predicted by the model is plotted against the
applied force and compared to the experimental results in Figure 11. In doing so, the applied force
and change in capacitance are calculated using Equations (10) and (11), respectively. As shown, great
agreement is found to exist between the model predictions and experimental measurements reported
in [48]. It is worth noting that while the experimental results are reported for displacements of up to
U = 150 µm [48], the model predictions shown in Figure 11 are obtained for top-surface deformation
levels of up to U = 500 µm.
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Figure 11. The change-in-capacitance plotted against the applied force. The discrete points are showing
the experimental measurements reported in [48], while the solid line is showing the modeling results
obtained in this study. The model predictions are reported for q = 0.2469 and γ = −0.2720.

Consistent with the figure, as the applied force increases the capacitance change (slope of the
F− ∆C curves) decreases. This agrees with our earlier findings in [31] and is due to the saturation of
dielectric layer under increased applied forces as well as the deformation characterestics under large
applied sensor displacement.

To further explore the model’s capabilities, the experimental capacitance change results obtained
by testing three different sensors reported in [31] are plotted in Figure 12 along with the calibrated
model predictions. As discussed in [31], three different sensors of electrode gap of 20, 50 and 100 µm
were tested and the applied force, capacitance change were recorded. In generating the model
predictions shown in Figure 12, the model was calibrated to match the layer geometry, electrode
location and electrode gap along with the layer material properties as reported in [31]. As shown,
the model predictions are in close agreement with the experimental results for all three sensors over
their entire testing regime. This type of model comparison to experimental results reported both in
Figures 11 and 12 suggests that the model reported herein has the broad capabilities of capturing the
tactile sensor response for a broad range of geometries, electrode gap and location, layer thickness
and material properties. It is re-assuring to observe that while calibrating the model for one of
the sensors reported in Figure 12, the model is then capable of capturing the response of the other
two sensors by adjusting the electrode gap to match that of the corresponding sensor to which the
model is compared to.

Figure 12. The change-in-capacitance plotted against the applied force. The discrete points are
showing the experimental measurements reported in [31], while the solid line is showing the modeling
results obtained in this study. The model predictions are reported for q = 2.52, 2.10, 0.42 and γ =

−0.27,−0.07, 0.13 for electrode gaps of De = 20, 50, and 100 µm, respectively.
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To further understand the physics of the deformation, the electrode thickness and spacing is
plotted against the applied force in Figure 13a,b, respectively. As expected, the electrode thickness
decreases and the electrode spacing increases during the deformation.

(a) (b)
Figure 13. The electrode (a) thickness and (b) spacing plotted against the applied force. The results are
obtained using the model developed in this study i.e., Equations (13) and (14).

Since extensive parametric studies have been carried out for different sensor geometrical
parameters in our previous work [31], no such studies are presented in this work.

6. Conclusions

In this work, the non-linear finite flat punch semi-analytical model developed in [50] was
combined with an enhanced capacitance model to develop a tactile unit-sensor model capable of
predicting the sensor response under the application of normal forces over the sensor’s entire working
range. In doing so both material and geometrical non-linearity assumed. Inverse analysis, combining
finite element modeling and non-linear optimization, was performed to find the Mooney-Rivlin
material constants C1 and C2. Using the experimental results and non-linear curve fitting, the enhanced
capacitance model based on the parallel plate capacitance theory was developed to account for the
fringe field as well as saturation effects. The model developed herein was validated by experimental
results. In doing so, first, the applied force was plotted against the applied displacement and compared
to the experimental results. Next, the change-in-capacitance was plotted against the applied force and
also compared to the experimental measurements. Great agreements were found to exist between
model predictions and experimental results in both curves.

Given the outcomes of this work, on-going studies are focused on the development of similar
sensor models that account for both normal and shear forces. In addition, parametric studies on
different sensor parameters (e.g., pillar height, width, placement, · · · ) need to be performed as needed
to optimize the sensor geometry to achieve highest sensitivity and dynamic range under combined
loading. Finally, the model and methodology employed in this study may also benefit other fields
such as the field of biomaterials wherein tissue properties may be needed.
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